Creating LiDAR Products – Evaluating Processing Methods \Techniques

City of Springfield GIS

Nathan Huggins

Advanced LiDAR Workshop March 15, 2012

LiDAR Project Details

Background

- Partnership of several organizations
 - Greene County
 - USGS
 - US Army Corps of Engineers
- Covered Greene County ~ over 678 square miles
- Flight took place in late January 2011
- Ground sampling distance 0.7 meters
- Vertical bare earth accuracy 15 cm (5.9 in) RMSE
- 4 classes
- □ \$300,000+ cost

LiDAR Delivery (700+gb)

Hard Drive - May 2011

- □ ASCII BE (.txt)
- Bare Earth (.las)
- Classified (.las)
- DTM (.shp)
 - X, Y, Z, Class, RetNum
- ESRI DEMs (grid)
 - ½ meter 1.64 ft
- Raw LiDAR (.las)
- Tile Schema (.shp)

LiDAR Products "Wanted"

- LiDAR Products Requested
 - Raster Products
 - County-wide DEM
 - □ Transition from 30m \rightarrow ½m DEM
 - Spot Elevations
 - Hillshade
 - Digital Surface Model
 - Vector Products
 - Contours
 - □ 5' Cartographic
 - 1' Engineering Preliminary Design
 - Scale dependent layer file
 - Possibly cached in ArcServer
 - □ Data Layers → Standard Project(s)

Resources

Hardware

Virtual Server

- Windows Server 2008 R2
 Standard
- 64-bit
- 10 gb RAM
- □ 275 gb Disk Space (2 drives)
 - Requested 1tb
 - Delivery data on separate server
 - No recovery solution

Software

- ESRI v10
 - ArcInfo License
 - Extensions
 - Spatial Analyst
 - 3D Analyst
 - Community Base Map
 - ContourHarvester
 - ElevationLine
 - Model Builder \ Python

DEM Creation & QC

- Delivery 820 ESRI Grids 1.64 ft pixel, 35.8 mb each
- Imported DEMs into a File Geodatabase
- Produced 2 Mosaics
 - "Mosaic Dataset" within new FGDB new in v10
 - Create quickly and used for QC and contour creation
 - □ 3 min 42 seconds
 - Only contain references to source data
 - On the fly processing through functions
 - □ Raster Dataset Columns and Rows (103,664 : 79,273)
 - Single file 20 gb
 - 12+ hours processing

DEM Creation & QC cont'd

- City QC Process
 - Checked 500 overlapping pixels
 - Identified large data void
- Received USGS "Elevation QA Report"
 - Fixed 13 bridge removal errors
 - Fixed building removal artifact
 - Filled in data void

Requested and received copy of "Corrected" DEMs from USGS

- SPCS projection but elevation was in meters
- 20 .img files
- Determine the "Difference" \rightarrow Delivered vs. Corrected

DEM Comparison

- Import Corrected .img files into FGDB
 - □ Snap Raster to Delivery Mosaic ~ .4ft
- Created Raster Dataset for Corrected
 - Converted from meters to feet
 - Set Null for values = -9999
- Created "Difference" Mosaic Dataset
 - Used Arithmetic function to subtract 2 raster datasets
 - Exported and Reclassified to create statistics
 - Created Difference example maps
 - Decided to use Corrected DEM
 - 98% of pixels were within ± .10 ft in elevation between the Corrected DEM & the Delivery DEM

Corrected vs. Delivered Map Example

Contour Processing

- Created 5 ft cartographic contours
 - Originally to be used only within Community Base Maps
 - Walkthrough by ESRI staff Arthur Crawford (St. Charles)
 - Used Delivery Mosaic Dataset initially created
 - Series of 3 "Statistics" functions: i.e. Smoothing
 20 x 20 neighborhood calculates the mean
 - Community Base Map Tools Contour Harvester
 - Alter script based on pixel cell size
 - □ Simplify Line = .50 ft
 - Community Base Map Tools Elevation Line Index Tool
 - Indexes @ 10, 25, 50, 100, 250

5ft Cartographic Contours & Issue

1ft Contours \rightarrow Trial & Error(s)

- 1ft "Engineering" contours accurate
 Use non-smoothed DEM
- Multiple attempts and strategies for creating 1ft
- Initial idea create contours for entire county
 - Use the Delivered Mosaic Dataset and Spatial Analyst
 - Ran 15+ hours then failed
 - 999999 : Error executing function
 - Re-booted the server, increased virtual memory & tried again – same result
 - Determined just not enough memory \ processing
 - □ Flawed idea \rightarrow drawing performance issues

1ft Contours cont'd

- New strategy: Process smaller areas \rightarrow Append
 - Toolbox: Environment Settings: Processing Extent
- Using tile layout created 16 processing grid polygons
 - Success 1ft contours created
 - □ Run Simplify = .25ft (greatly reduces file size)
 - Vertex every pixel = poor draw performance
 - Removed contours less than 50 ft in length
 - Aesthetically more pleasing, less "noise"
 - Less features better performance
 - □ Imported into Feature Dataset with .01ft XY tolerance
 - Appended 16 parts into single feature class
 - Elevation Line Index Tool: Indexes @ 2, 5, 10, 20, 50

Contour Process Example / QC

Grid 1 Contours

- Initially 1.09 gb
- Simplify 194 mb
 .25ft

Delete – 172 mb

- Contours < 50ft</p>
- □ Features 184,521 → 21,947
- Import FD 96 mb
 - XY tolerance = .01
- All: 22.7 gb → 1.8 gb

Contours → Try Again

- Contours unacceptable missing segments
 - Processing grid
 - Deleting contours < 50</p>
- Back to Contour Harvester
 - Created 1ft contours
 - Overlap \ Intersect errors
 - Attempt to use topology rules to fix
 - 2382 Grids = 10,000+?? errors
 - Determine no easy/quick solution
 - Abandon hope

Contours → New Processing Grid

- Re-Evaluate processing grid
 - Contours from adjoining processing grids should touch
 - Used a small test area and tested different parameters
 - Determined grids that overlapped within the same pixel produced coincident contour endpoints
 - Created 64 new processing grid polygons
 - Expanded from 16 to increase draw time (Contour Harvester)
 - 64 largest manageable number: split old 16 into quarters
 - Started ¼ inch and ¼ up from the corner of a pixel
 - Determined width and height length in pixels of interior grids
 - Manually set X,Y's of all polygon corners to ensure proper overlap
 - No data values also affect results left side and bottom

Contours 64 Poly Processing Grid

Final Contours Created

- Used new 64 grid and Corrected Mosaic Dataset
 - **Evaluated smoothing techniques** ESRI & ET GeoWizard
 - Smoothed it by 3 x 3 pixel window
 - Good balance between accuracy and aesthetics
- Created 64 contours files
 - □ Simplify = .25ft
 - Created python script ran in batch mode
 - Removed contours less than 31ft except ones that intersected tile boundaries
 - Appended 64 parts into single feature class (1.24 gb) in FD
 - Elevation Line Index Tool: Indexes @ 2, 5, 10, 20, 50

Contour Examples

Contour Examples cont'd

Final Steps and Future Plans

- Loaded DEM & Contours into SDE
- Created a scale dependent contour layer file
 Includes 5ft and 1ft contours
- Distribute LiDAR and Products
 - MSDIS LiDAR ftp
 - Local Government Data ftp
- Educate users
 - City employees & engineering community
 - Create video on using .las files in AutoCAD

Thank You – Questions??

