Using Lidar to Understand the Landscape **Frank Nelson** Missouri Department of Conservation Big Rivers and Wetland Field Station, Jackson MO

Large scale: Water (driving force behind topography)

Fluvial Systems have and still Function at the Landscape Scale

Swampland late 1880's

HDydnioage door asticute at a res Spring Flood 2011 (soils,(h6,d)60ogyjetopogrephy,)plants)

Quantifying topography is imperative

Using Lidar for Conservation

Using Lidar for Conservation

- Wetland management has evolved over time
 - From hunter access to species requirements

- Wetland management has evolved over time
 - From hunter access to species requirements
 - Understanding our place in the landscape (HGM)

Abandoned Channel

(wetter, lower, tight soils)

Point Bar

• (dryer, higher, sandy soils)

Interaction of soils, topography, and water:

Plant response is different

- Wetland management has evolved over time
 - From hunter access to species requirements
 - Understanding our place in the landscape (HGM)
 - Mimicking natural systems

- Engineering challenges
 - Scale (boundary lines)

- Engineering challenges
 - Scale (boundary lines)
 - Scope (linear, levees)
 - Time constraints
 - Line of site
 - Other priorities:
 - Boundaries
 - Construction

- Engineering challenges
 - Scale (boundary lines)
 - Scope (linear, levees)
 - Ease of construction vs long-term maintenance

Pros and Cons

- Cheaper
- Steeper slopes
- Attractive to burrowing animals
- Erosion/repetitive maintenance

- Engineering challenges
 - Scale (boundary lines)
 - Scope (linear, levees)
 - Ease of construction vs long-term maintenance

Borrow dirt within the pool and hauling it to the levee

Pros and Cons

- Different equip.
- Less maintenance
- Gradual slopes
- Habitat more functional

Mississippi Alluvial Valley

Lidar: Helps quantify the shape of the land

Lidar: Helps
quantify the
shape of the
land...and
provide context

Useful communication tool

Spring flood of 2011 in SE Missouri +24 inches of rain within 10 days

Lidar: Helps
quantify the
shape of the
land...and
provide context

Useful planning and management tool

- Red oak decline
- Little regeneration
- Maple, ash, gum mid-story
- How to manage water?

Pool 3: Forest Community

Flood Tolerance

- Community Type
- Health and Recruitment

Pool 3: Topography Information Management Tool:

Extent of Suitable Habitat

Pool 3: Topography Information Management Tool:

Provides biologist with depth and extent of flooding to help guide decisions

Species foraging depth

Extent of Suitable Habitat

Pool 3: Flow Modeling

Pool 2:

Evaluating Opportunities with a Broader View

- Remove obstacles to sheetflow <u>within</u> Pool 2
- Our focus was SW

Pool 2:

Evaluating Opportunities with a Broader View

- Remove obstacles to sheetflow <u>within</u> Pool 2
- Our focus was <u>SW</u>
- Lidar widened our view
- Historic drainage went across levee to the east
- Switched our focus to the NE...almost 180°

Pool 2:

Evaluating Opportunities with a Broader View

- Zoomed into the pool
- Identified spoil piles that cut across major drainages
- Prohibit flooding or draining
- Target spoil pile removal

Lidar: Helps
quantify the
shape of the
land...and
provide context

Useful restoration tool

Microtopography and slough systems are features that create diverse habitat conditions

Clues of a diverse past

Fine Resolution of Curvature and Shape of the Land

Paired elev. data with historical photos to identify location of historic features

Reconfiguring Infrastructure

Filled in straight lines that ignored the fall of the land

Leveling spoil and field ditches to the natural ground to accommodate sheetflow

Reconfiguring Infrastructure

Put levees on the contours (2-2.5 feet)

Contour levees: 10:1 side slopes, located along 2-2.5 contours, <6 inch freeboard

Reconfiguring Topography

Used cut/fill to increased topographic diversity of area

Stream Restoration and Creative Scours:

Creative borrowing:

- Broad
- Shallow <2 ft

Lidar is a useful tool for:

Communication

- Planning
- Management
- Restoration

Communication is also necessary for acquisition

MDC:

Gene Gardner, Mike Schroer, Kevin Borisenko, Tony Spicci

Partners:

USFWS USGS USACOE

NRCS: Liz Cook

Communication is also necessary for acquisition

Preparing sites (dewatering)

Timing of flight (leaf-off)

Verification (water lines)

Verification using Intensity Data: Forest Inundation

Flooded Timber in Pool 1

- GPS Waterline
 - Trimble unit path
- Known Pool Elevation
 - Pool 1: 346 ft
- Lidar Intensity Data
 - Darker = Low Intensity (saturated zone)
 - Lighter = High Intensity (unsaturated zone)

Verification using NAIP imagery

Adjacent Rice Levees

East of Pool 2 on Private Land

Levees = Contour Lines

The Mingo Basin

Lidar: Helps quantify the shape of the land

A tool for broader regions

nering up to nd the landscape mize damages in he future