

Building Blocks of GIS Shapefiles, Geodatabases, and Services

Tim Haithcoat

University of Missouri – GRC/MSDIS

with resources from Rowan University

and from ESRI – Jack Dangermond NGAC presentation

Geodatabase vs Other Formats

- Coverages and Shapefiles store geospatial and attribute data in different locations in different formats
 - —.shp (proprietary binary format)
 - -.dbf (dBase database format)
- Geodatabases store both geospatial and attribute data in the same structure

Benefits and Drawbacks

- Benefits
 - —GIS data can now be handled like most other data, and stored in a RDBMS
 - Greater flexibility and functionality
 - -"Enterprise" level of managing data
- Drawbacks
 - -Speed hit
 - Even more rope to hang yourself with

ESRI Geodatabases

- File Geodatabase
 - Introduced in 9.2, the File Geodatabase is the latest, greatest file-based format from ESRI
- Personal Geodatabase
 - -Introduced in 8.x
 - Based on Microsoft Access/Jet Engine
- ArcSDE
 - Software (now part of ArcGIS core) that allows
 RDBMSs to act as GIS data stores.

Personal Geodatabase

- Based on Microsoft Access
- Great for bringing outside data into ArcGIS
- Limited to 2GB
- Becomes slow as amount of data increases
- Stores data in one file called geodatabase.mdb

File Geodatabase

- Latest format
- Best modern format for large datasets
- Very efficient use of storage space
- What you should be using for significant work
- Stores data on disk in several files within a directory named geodatabase.gdb

ArcSDE/Enterprise database

- Most likely stored on a different machine from the one you're using ArcGIS on
- Same basic functionality as other GDBs
- Can store versions of the GIS features,
 allowing you to see changes over time
- Concurrent users (multi-user and replication)
- Managed (hopefully) by a DB administrator

Transactions

- Geodatabase edits are either committed or rolled back
- Edits performed in a multi-user environment are integrity checked
- Atomic-level editing and revisioning
- Needed to prevent a race condition

Versioning

- GIS tracks edits made and maintains a journal of all changes to the database
- This record keeping allows for roll backs to any date on record
- Keep one set of records while reverting another
- Same database methodology as Wikipedia

Geodatabase Types

Working with Geodatabases

- At a minimum, consider it similar to a subdirectory with shapefiles
- Unlike shapefiles, you can enforce extents, storage types, projections, topology rules, connectivity rules, network-specific rules, and so on
- This additional functionality is implemented through Feature Datasets

Feature Datasets

- A "folder" within the GDB, it preserves projection and extent information for data within the folder ("feature classes")
- To make it useful, you must set extent and projection information
- Put some forethought into it before specifying projection and extent!

Feature Datasets

- After creating a GDB, right click and choose New > Feature Dataset
- The dialog boxes will step you through setting the variables for the Feature Dataset

Importance of Extent

- The Geodatabase will only bother with the information within the extent
- It will throw an exception if you attempt to put something that doesn't fit in the box
- ArcGIS can preserve the difference between two points down to the molecular level
- Setting the extent allows you to control the precision at which ArcGIS handles data
- Needlessly too precise, and you'll have errors that'll never show up on the screen, but will still impact your data, analyses, and speed

Defining Missouri

- Projection:
 MO State Plane (feet)
- Extent: ?
 - Should it be tight?
 - Should it extend outside the boundaries?

Defining Missouri

- In this case, Arc defaults to a grid of 0.00328 feet
- Roughly 4/100ths of an inch
- About a hair's width
- 0.02 feet is slightly smaller than 1/4"

Balancing Precision and Functionality

- Have your extent <u>match the scale</u> at which you are / plan to work
- Leave a little wiggle room
- Working in Missouri? Some of IL, KY, TN, AR, OK, KS, NE, and IA should fall into your box.
- If Greenland fits? Your box is a bit too big.

Additional Functionality

- In your Feature
 Dataset, right click and see what pops up under New >
- Topology
- Geometric Network
- Network Dataset
- Terrain
- Etc...

Geodatabase as a Container

- Each of these "special" datasets uses the GDB to store data specific to its framework
- Topology stores associated attribute tables, rules, and error information
- Network stores network edge attributes, turn tables, and driving/routing directions

Normalization

- A normalized database is one that has little redundancy within its tables
- Record ID or some other key links to a table with those values
- Instead of storing "Modified Agricultural Wetlands" numerous times as text, store it once as text and refer to it using a key (2140)

Normalization

- Work in a normalized environment
- Analogs:
 - Non-normalized: Excel Spreadsheet
 - Normalized: well made Access DB (lookups)
- When distributing for the public, "flatten" the database out to one table per layer and make it a shapefile

Geodatabase Environment

- Important to work in a GDB whenever possible
 - Assured extents, projections, etc.
 - Quality control
 - Greater number of tools at your disposal
- Export to other format (.shp) for distribution

Data, data, everywhere

- In the Internet age, massive amounts of data are compiled, transmitted and analyzed every second
- Understanding the storage and retrieval methods are critical
- Difference between drinking and drowning

Today GIS Is Very Valuable to Government

Used in Many Integrated Applications

Improving Planning, Management and Decision Making . . .

... Providing Critical Infrastructure

Systematic Data Creation & Sharing Has Been a Key to This Success

Many Agencies Share Data as Part of their Core Mission (Census Bureau / USGS / USDA . . .)

Data Clearinghouses Have Improved Access . . .

. . . But Haven't Resulted in a Geospatial Framework

GIS Technology is Changing - Becoming

Internet Focused

Richer, Easier & More Pervasive New Styles, Patterns & Techniques

Many Opportunities for Spreading Geography Everywhere

Governments Are Beginning to Create Geo-Services

Providing Building Blocks of NSDI

Standardized Open & Interoperable Easily Integrated Easy to Use **Application Ready** Using the Internet as a Platform Services Shared Geospatial Resources

Moving from Data File Sharing to Creating Standards Based Services . . . Opening Access to Many New Users & Applications

GeoServices will be Implemented Rapidly

Supporting a Large Community of Users & Applications

Integrating All Levels of Government . . .

Supporting Open Access, Collaboration & Transparency

A National GIS / NSDI Could Emerge

A Distributed Network of Systems & Services

Providing

... Integrating National, Regional & Municipal Geospatial Knowledge

The Foundation will be New Computing **Paradigms**

GIS Servers / Services

Web 2.0s—mash-ups

Mobility

& support real time

Services Based Architecture

Cloud computing

Efficiency and Reliability

Integrate diverse content

QUESTIONS?

Going Further

Standard Query Language

- SQL is the standardized method of interacting with a database
- Even Access allows you to use SQL
- Insert (new records into a DBMS)
- Update (existing records in DBMS)
- Delete (remove records from DBMS)
- Where (limits your results)

Select Statements

- Most common SQL query you will encounter
- "Select By Attributes" has this as the foundation
- Nothing more than "SELECT * FROM gis_layer WHERE..."

Joins

- In ArcGIS or Access, you join two (or more) tables together using a primary key.
- If the keys match, the secondary tables are tacked on to the first
- Again, geospatial is special, so GIS has another type of join

Spatial Joins

- Relationship not determined by key, but by proximity or connectivity
- Contains/Within/Overlaps
 - One feature falls entirely within another
- Touches/Intersects/Crosses
 - One feature touches another
- Equals or Disjoint
- List of spatial relationships.

Relations

- Joins work for one-to-one relationships, where one record in a table matches to one (and only one) record in a foreign table.
- Often, data requires the use of a one-to-many or many-to-many relationship.
- In GIS, joins are strictly 1-to-1. Relations allow the GIS user to access more complicated relationships in the database.